The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency.

نویسندگان

  • Petr Svoboda
  • Matyas Flemr
چکیده

RNA silencing is a complex of mechanisms that regulate gene expression through small RNA molecules. The microRNA (miRNA) pathway is the most common of these in mammals. Genome-encoded miRNAs suppress translation in a sequence-specific manner and facilitate shifts in gene expression during developmental transitions. Here, we discuss the role of miRNAs in oocyte-to-zygote transition and in the control of pluripotency. Existing data suggest a common principle involving miRNAs in defining pluripotent and differentiated cells. RNA silencing pathways also rapidly evolve, resulting in many unique features of RNA silencing in different taxonomic groups. This is exemplified in the mouse model of oocyte-to-zygote transition, in which the endogenous RNA interference pathway has acquired a novel role in regulating protein-coding genes, while the miRNA pathway has become transiently suppressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

microRNAs, the cell's Nepenthe: clearing the past during the maternal-to-zygotic transition and cellular reprogramming.

The maternal-to-zygotic transition (MZT) is a universal step in animal development characterized by two major events: activation of zygotic transcription and degradation of maternally provided mRNAs. How zygotic gene products instruct the degradation of maternal messages remains a long-standing question in biology. MicroRNAs (miRNAs) have recently emerged as widespread regulators of gene expres...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio

MicroRNAs (miRNAs) are small, endogenous, regulatory RNA molecules that can bind to partially complementary regions on target messenger RNAs and impede their expression or translation. We rationalized that miRNAs, being localized to the cytoplasm, will be maternally inherited during fertilization and may play a role in early development. Although Dicer is known to be essential for the transitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 2010